

Proven Products. Real Results.

Low-Cost Enzyme-Based Technology for Carbon Capture

2012 NETL CO₂ Capture Technology Meeting July 11, 2012 Pittsburgh, PA Luan Nguyen

Outline

- Project Highlights
- Codexis Company Background
- Codexis Approach to Carbon Capture
- □ Introduction to CodeEvolverTM Directed Evolution Technology
- Project Status
 - Bench-scale enzyme activity and stability results
 - Field pilot testing at NCCC
 - Aspen⁺ process modeling
- Techno-Economic Analysis
- Summary and Next Steps
- Acknowledgements

- A portion of this program is funded in part by the Advanced Research Projects Agency – Energy (ARPA-E), an agency of the United States Department of Energy, under Award Number DE-AR0000071.
- Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

Developed an **enzyme-based technology** (Gen 1) for carbon capture that, when compared with MEA based capture, could

- 1. Reduce CAPEX >100M **\$US** for PCCC plant
- 2. Increase net power production by >75 MWe (vs. ~550 MWe)
- Enable a novel biocatalytic process for carbon capture w/
 LCOE = 97.0 mills/kWh

(41% LCOE increase vs. 85% increase from State-of-Art MEA process)

Field demonstrated pilot-scale CO_2 capture process with industrial flue gas at the National Carbon Capture Center in May 2012

We develop enzymes and microorganisms that enable cost-advantaged production of biofuels, bio-based chemicals, and pharmaceuticals

- Founded 2002
- HQ in Redwood City, CA
- 340 Employees

Our Core Assets

We develop enzymes and microorganisms that enable cost-advantaged production of biofuels, bio-based chemicals, and pharmaceuticals

- Founded 2002
- HQ in Redwood City, CA
- 340 Employees

Our Partners & Customers

Current Capture Technology is Costly

arpa·e

Current solvent capture is either too slow or energy intensive

- Increases cost of electricity >85%, reduces power output by >30%
- \Box Solvents are used in large amounts and must be heated to release CO_2

Biological catalysts are very fast, but not stable under industrial conditions

CODEXIS

Codexis Approach to Carbon Capture

• Carbonic anhydrase (CA) accelerates an otherwise negligible reaction.

• CA turnover rate up to 1 million CO₂ molecules/s/s ^[1].

• A 'biomimetic' approach based on millions of years of evolution.

Low-Energy Solvent ^[2]	ΔH _{Des} (kJ/gmol)	k ₂ x e ³ (M ⁻¹ s ⁻¹) @25°C	Degradation	Corrosion	P* _{solvent} (atm x 10 ³) @40°C
MEA	84	6	High	High	0.1
MDEA	60	0.005	Moderate	Moderate	0.003
AMP	60	0.6	Low	Low	≈0.03
K ₂ CO ₃	20	0.05	None	High	0

Soluble enzyme in an energy efficient solvent could enable a low-cost process for carbon capture.

^[1] Khalifah, R.; Silverman, D. N., Carbonic Anhydrase Kinetics and Molecular Function, The Carbonic Anhydrase In Plenum Press: New York, 1991; pp 49-64.

^[2] Extracted from G. Rochelle, "CO₂ Capture by Aqueous Absorption/Stripping", Presentation to MIT Carbon Sequestration Forum VII, October 31,2006.

Codexis Directed Evolution Technology

Fox & Huisman TibTech 2008

CODEXIS

CodeEvolver

DEXIS

Selecting Best CA for MDEA

Selection Criteria:

- 1. High activity in MDEA.
- 2. High thermo- and solvent-stability.
- 3. Can be produced economically.

Thermophilic CA:

- Very thermostable.
- Low activity and stability in high MDEA concentrations.

Human CAII:

Good activity, low stability.

CA-102:

- Accelerates CO₂ absorption rate at modest concentrations (<1 g/L SF powder).
- Good thermostability.
- Produced economically.

CA Evolution: Tiered Screening Approach

arpa·e

CodeEvolver[™] Biocatalyst for Accelerated Carbon Capture

- Created enzymes that increased rate of CO₂ capture >25-fold under industrial conditions (NCCC)
- Created enzymes with 10⁶-10⁷ increased stability with rates of catalysis of 10⁶ fold
- Now screening at temperatures higher than boiling point of water (107°C!)

Long-Term Stability Under Absorber Condition

4.2M MDEA, 50 C Challenge (n=6)

- Top performers were tested for activity after being challenged at 4.2M MDEA for up to 14-weeks at 50°C.
- All of the variants tested were still active after the 14-weeks at 50°C.
- Some variants retained up to 70% of their initial activity.

- Evolved CA has high tolerant for flue gas contaminants SOx/NOx in 4.2 M MDEA at 50°C.
- •No observable effects from typical leachable metals from equipment/piping, etc.

Field Testing at the National Carbon Capture Center

Alabama Power Plant E.C. Gaston

Wilsonville, Alabama

Objectives:

- Demonstrate CA-accelerated process concept.
- Demonstrate enzyme performance:
 - Long-term stability with real flue gas (eg., Mercury, SOx, NOx, Heavy Metals..)

 $\hfill\square$ Quantify mass transfer enhancement

• Collect engineering data for model validation.

<u>Codexis Test Unit – 10 kWe:</u> Gas flow rate – 400 SLPM Liquid flow rate – 2 LPM CO₂ removal ~150 kg CO₂/day <u>Absorber column:</u> Diameter = 100 mm (4" ID) Packing Height = 6.3 m Packing type: 16 mm (5/8") Pall Rings Surface area: 350 m²/m³; efficiency ~10-15% Desorber tank (No packing):

Volume = 15 L Residence time = 30-60 sec

Enzyme-Assisted Desorber

Developed Aspen⁺ Model with Proprietary Enzyme Kinetics

Long-Term Stability under Industrial Flue Gas Conditions

- Stable enzyme performance after 6 days under industrial flue gas conditions (ie., Mercury, heavy metals, SOx, NOx, etc.) with ~0.2 g/L of CA.
- Stable desorber operation at T_{desorption}=87°C
- Achieved solvent capacity for CO_2 removal, $\Delta \alpha \approx 0.2$ (mol CO_2 /mol MDEA)
- No solid precipitation after 6 days of operation.
- Robust system operation with multiple start-up/shut-down cycles.

Enzyme Acceleration in Low-Energy Solvent

CA Loading (g/L)

- Increased Mass Transfer Coefficient by ~20-fold with 0.2 g/L of CA under industrial conditions.
- •Collected engineering data over wide range of conditions for Aspen⁺ model validation:
 - e.g., MDEA concentration (25-50wt%), CA loading (0-1 g/L), T_{abs} (30-50 C), T_{des}(85-95 C), L & G flow rates (to achieve 30-95% CO₂ capture).

CODEXIS

Predicted Impact of Enzyme on Absorber & Desorber Size

- Codexis enzyme-based technology could significant reduce CAPEX:
 - ~95% reduction in CO₂ absorber column size with low-energy solvent MDEA.

DEXIS

• ~80% reduction in desorber volume without use of structure packings.

Predicted Enzyme-Assisted Desorption Energy Reduction

Enzyme-Assissted Desorption

Desorption temperature (C)

- Enzyme-assissted desorption could
 - Reduce parasitic load by 20 40% vs. MEA, i.e., lower steam extraction requirement.
 - Increase enzyme life-time and decrease solvent degradation rate, i.e., lower OPEX.

Nexant PC/Codexis PCC Plant Integration

Codexis to develop enzyme-base CO₂ capture models in Aspen⁺

• Established heat and material balance, equipment sizing, PCC operating conditions, etc.

Plant integration by Nexant

- Developed an integrated design combining a PC and PCC plant.
- Set-up a GateCycle model for the combined PC and PCC plant
- Run the model to estimate the performance of the combined system

Cost Estimate and Economic Assessment by Nexant

- Estimated CAPEX and OPEX
- Set-up a Power System Financial Model (PSFM) using financial parameters established by DOE
- Estimated incremental levelized cost of electricity (LCOE) using the PSFM.

CA Enabling Low-Cost Biocatalytic Process for Carbon Capture

¹ Escalated to 2010 dollars.

Low-cost CA-accelerated MDEA process for CO₂ capture w/LCOE = 97.0 mills/kWh

Techno-Economic Analyses (Con't)

¹ Assume Nth kind of plants w/o added process contingency, interest, or debt-to-equity penalties.

Codexis enzyme-based technology (Gen 1) for carbon capture could

- Reduce CAPEX by 146M \$US for PCCC plant
- Increase net power production by 78 MWe (vs. ~546 MWe)

- •Created enzymes that increased rate of CO_2 capture >25-fold under industrial conditions (NCCC).
- •Created enzymes with 10⁶-10⁷ increased stability with rates of catalysis of 10⁶ fold.
- Demonstrated successfully at pilot-scale of enzyme-based technology for carbon capture.
 - Highly stable enzyme performance under real industrial flue gas conditions.
 - \Box No observable impacts from flue gas contaminants on performance.

Enzyme-Based Technology Provides Cost Savings

CA Enables Energy Efficient Solvents

- Reduce CAPEX by 146M \$US for PCCC plant
 - $\hfill\square$ 90% reduction in CO_2 absorber column size
 - \square 80% reduction in desorber volume, eliminate the use of expensive packings
- Reduce energy consumption by ~30%
 - Increase net power production by 78 MWe
 - Potential to use LP steam
- Provide Low-cost biocatalytic process for carbon capture w/LCOE = 97.0 mills/kWh

• Design and scale-up process/equipment for 0.1-0.5 MWe slip-stream demonstration.

 Continue to evolve enzyme via CodeEvolver[™] for Gen 2 Biocatalyst/Technology with higher activity/stability and lower production cost.

• Engage with strategic commercialization partners.

Codexis & CO₂ Solution IP

Intellectual Property generated under Award Number DE-AR0000071

- 8 Subject Invention disclosures
- 2 US provisional patent applications
- 2 US non-provisional applications
- 2 International applications

Joint Development Agreement

CO₂ Solution and **Codexis** working exclusively together to validate enzyme catalysis for economical capture of CO₂

CO₂ Solution holds a number of issued patents for use of carbonic anhydrase (CA) for carbon capture

- Enzyme-solvent formulations
- Processes
- Sector applications

Complements Codexis IP portfolio in enzyme evolution and optimized carbonic anhydrases

Selected CO₂ Solution Patents

Patent #	Area of Carbonic Anhydrase (CA) CO ₂ Capture Application	
US 7,740,689	Amine solvents	
US 7,596,952	Power plants	
US 7,176,017	Triphasic reactor	
US 6,524,843	Packed column system	
US 6,908,507	Cement production	
US 7,521,217	Thermally stable CA variants	
US 7,514,056	Air fractionation / oxygen production	
US 61/231038	CA on micro-particles	
US 61/231037	Carbonate solvents	
US 61/231039	Amino acid solvents	

<u>Codexis</u>

Oscar Alvizo Chris Savile Sabrina Zimmerman James Broering Mike Benoit Joshua Geilhufe Jaime Parsons Deepali Rishipathak Vaishali Agarwal Janelle Muranaka Earl Solis Sammons Norman Jack Liang Scott Novick Satish Lakhapatri **James Riggins** Irene Fusman **Jamie Bresson** Jeff Pollack **Trish Choudhary** Svetlana Gitin Janelle Muranaka Svetlana Balatskaya Ann Lao Jim Lalonde (PI)

Nexant Robert Chu

Haoren Lu **Gerald Choi**

NCCC/NETL Thomas Carter Frank Morton

ARPA-E Mark Hartney Daniel Matuszak (BAH) Karma Sawyer

Codexis Labs Redwood City, CA

These slides and the accompanying oral presentation contain forward-looking statements that involve risks and uncertainties. These statements relate to future events or our future financial or operational performance and involve known and unknown risks, uncertainties and other factors that could cause our actual results, levels of activity, performance or achievement to differ materially from those expressed or implied by these forward-looking statements. Forward-looking statements include all statements that are not historical facts. In some cases, you can identify forward-looking statements by terms such as "may," "will," "should," "could," "would", "expects," "plans," "anticipates," "believes," "estimates," "projects," "predicts," "potential," or the negative of these terms, and similar expressions and comparable terminology intended to identify forward-looking statements. These forward-looking statements represent our estimates and assumptions only as of the date hereof, and, except as required by law, we undertake no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

Other factors that could materially affect actual results, levels of activity, performance or achievements can be found in Codexis' Quarterly Report on Form 10-Q filed with the SEC on May 10, 2012, including under the caption "Risk Factors." If any of these risks or uncertainties materialize, or if our underlying assumptions prove to be incorrect, actual results, levels of activity, performance or achievement may vary significantly from what we projected.

Our logo, "Codexis," and other trademarks or service marks of Codexis, Inc. appearing in this presentation are the property of Codexis, Inc. This presentation contains additional trade names, trademarks and service marks of other companies. We do not intend our use or display of other companies' trade names, trademarks or service marks to imply relationships with, or endorsement or sponsorship of us by, these other companies.

luan.nguyen@codexis.com

(650)421-8324

www.codexis.com

